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Linearized Navier - Stokes equations are used to study the propagation of 
acoustic and vortex perturbation in a gas flow along a channel of finite 

length. A system of equations for the perturbed pressure and vorticity is ob- 
tained under the assumption that the oscillations are isentropic. 

The properties of the gas are assumed constant throughout the volume, and the lack 
of uniformity in the flow is connected with the velocity gradient only. 

Let us consider the isentropic oscillations. Variation in the entropy will also be ge- 
nerated in the gradient flow of the viscous gas, however the entropic perturbations need 
not be taken into account, since, unlike the acoustic perturbations, they can only pro- 

pagate downstream. The small isentropic variations in the gas density pt and pressure 
p1 are connected by the following relation: 

The linearized equations of small perturbations in the velocity v (v.~-, vu, u,) and pressu- 
re q have the form 

~+u~+v,~ e,=--2Vq+vAv + -$-Vdivv (1) 

$-+ ljz+divv=O 

Here U (Y) denotes the steady velocity of the unperturbed flow along the I- axis; p, 
y and a denote the constant density and viscosity of the gas and the speed of sound, 

respectively; and e.,., e,,, e, are the components of the unit vector. 
The interdependence of the vertical and acoustic oscillations can be shown simply 

by deriving from (1) the equations for the perturbed vorticity o = rot v and pressure 

‘1 l Taking rot and div of the first equation of (l), we obtain for o 

(2) 
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For the components 0% and ov the sources of vorticity proportional to dUl dy exist only 
in the case of three - dimensional perturbations. 

The variation in o, is described by the equation 

(3) 
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The dependence of the vorticity on the acoustic oscillations is given not only by the 
term proportional to div v; the velocity uy is determined by both o and div v. 

We have the following equation for the dimensionless pressure n : 

(4) 

The sources of the acoustic oscillations in the gradient flow appear in the right - 
hand part. 

To eliminate the velocity uy appearing in (3) and (4), we must use the expres - 
sions for o and div v as well as the second equation of (1). 

When div v = 0 , the velocity vy is expressed in terms of w and Eq. (3) for 

the plane oscillations reduces to the known Orr - Sommerfeld equation containing the 

first time derivative. In the general case Eqs.(3) and (4) contain the first, second and third 

time derivatives and the solution contains three interrelated waves: the forward and 
reverse acoustic waves, and the Tollmin - Schlichting wave. The phase velocities of 
the first two waves are nearly sonic (with a correction for drift due to the stream) and 
velocity of the third wave lies within the range of variation of the steady state stream 
velocity. The above waves will naturally be interconnected by the boundary conditions. 
The acoustic waves propagating upstream in a subsonic flow may cause absolute insta - 
bility in a bounded flow. We give one exact relation connecting the acoustic plane 
perturbations with the vertical perturbations , which follows from the expression (3) 

for a flow with a linear velocity profile and viscous term neglected 

(0, I Q0 + q = const 

Here Q0 = -dU / dy is the constant vorticity of the steady flow. This invariant is ob - 
tained by substituting the expression for div v from the second equation of (1) into (3) 
inwhichv=O andd2Uidy2==0. 
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